If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+25n+42=0
a = 3; b = 25; c = +42;
Δ = b2-4ac
Δ = 252-4·3·42
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-11}{2*3}=\frac{-36}{6} =-6 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+11}{2*3}=\frac{-14}{6} =-2+1/3 $
| 2x-4*3=2(x+1) | | 3x+(x-3)=-8 | | 2/5x+2/5=5/6 | | 3x2-4x+12=9 | | 5(b+5)/3=4b-28/6 | | x+(x(.05))=4250 | | (a-1)=(a+1) | | ((10•x)/25)=(0,1006•13,15)/1000) | | x-90=135 | | x-11=88 | | 75*x=10000 | | −8x=24 | | 4(2x+1/2)=2(2x+2) | | x+18=4*(x-48) | | x(x+8)-15=0 | | x+18=4*(x-45) | | 4x+5x+2x-9=24 | | (x+18)*4=-45+x | | 2x+5x+3x-4=16 | | (x+18)*4=45-x | | (x+18)*4=x-45 | | 5x+2x+4x-8=14 | | (18-x)*4=x-45 | | 72x=x-45 | | X*3x=29 | | -10(4k+11)=2-6(9k+7) | | 10=((7x+4)/5)+(9x+8)/7) | | -5(1-4n)+5=6+11(6n+12) | | -5+2(1+3a)=3(a-11) | | 2v/8=2/7 | | v+2-8=2/7 | | 7(x=4)=70 |